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An analytical stochastic dynamic stiffness formulation is developed for the dynamic analysis of damped
membrane structures with parametric uncertainties. First, the exact general solution of a biaxially taut
membrane in the frequency domain is derived, which is used as the frequency-dependent shape function.
Both the material properties and the tension fields of the membrane are modelled as 2D random fields
with an exponential autocorrelation function in both x and y directions. Then, the random fields are
decomposed by Karhunen-Loève (KL) expansion. After a formulation procedure like the finite element
method, the stochastic stiffness, and mass elemental matrices are derived based on the frequency-
dependent shape function and the KL expansion, subsequently forming the stochastic dynamic stiffness
matrix. The developed stochastic dynamic stiffness elements can be assembled to model membrane
assemblies with general boundary conditions considering uncertainties. The proposed method can be uti-
lized as a feasible technique for the efficient and accurate stochastic dynamic analysis in the whole fre-
quency domain. The current research paves the way for stochastic dynamic stiffness formulation for
other two-dimensional structures like plates and shells.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Uncertainties in complex dynamical systems play a very impor-
tant role in the dynamic properties. In engineering problems,
uncertainties appear not only in the applied loads [1–3] but also
in the geometric parameters, material properties [4] and boundary
conditions of the model. For distributed parameter systems, para-
metric uncertainties can be represented by random fields leading
to stochastic partial differential equations. Based on the classic
analysis, probability theory and statistics, the stochastic mechanics
of systems can be determined by quantifying uncertainties in the
system parameters. Feasible techniques for predicting the uncer-
tainties in the structural behavior of mechanical systems credibly
are receiving considerable attention lately.

Many efforts have been devoted to developing parametric
approaches for one-dimensional and two-dimensional structures
in computational stochastic mechanics that incorporate uncer-
tainty in classic approaches. In the last several decades, the finite
element method in conjunction with perturbation techniques,
spectral methods and Monte Carlo simulation (MCS) has been
widely investigated by many researchers [5–14], boosting the
development of so-called stochastic finite element method (SFEM)
and its extensions [15–19]. Besides, Kamiński [20] employed
stochastic finite difference method (SFDM) to model the vibration
of simply supported square plate. Similar to the SFEM, SFDM also
requires fine meshing to represent the original random fields,
which increases computational cost. Vilmann and Dasgupta [21]
used stochastic boundary element method (SBEM) to develop the
fundamental solutions of Mindlin plates with stochastic variation
in the thickness. Kaljević and Saigal [22] presented stochastic
boundary element formulation for two-dimensional steady-state
potential flow through homogeneous domains. Su et al. [23] pro-
posed a stochastic spline fictitious boundary element method for
the stochastic vibration analysis of plane elastic problems. Marcin
[24] presented the iterative stochastic perturbation-based bound-
ary element method to obtain high-precision probabilistic
moments of the structural response. Venini and Mariani [25]
developed stochastic Rayleigh–Ritz method for free vibration of
orthotropic composite plates. Zhang et al. [26] used multi-
domain Rayleigh–Ritz approach together with the generalized
polynomial chaos expansion to study the stochastic vibro-
acoustic responses. However, the Rayleigh–Ritz method [27] has
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difficulty with finding a set of test functions and is limited to reg-
ular domains. In combination with a Galerkin method, polynomial
chaos expansion is applied to the stochastic analysis of plates in
[28,29]. Gupta [30] used a meshless method called element free
Galerkin method to solve the elastic buckling of columns. Huang
et al. [31–33] used a Fourier-based for the wrinkling of membranes
and plates.

Another powerful tool has shown potential in computational
stochastic mechanics called dynamic stiffness method (DSM). For
deterministic distributed parameter linear dynamical systems,
the DSM has been developed to efficiently solve the problem in
the frequency domain. In more recent years, the DSM has been
applied to the vibration problems of one-dimensional [34,35],
two-dimensional structures such as plates and membranes suc-
cessfully [36–43], their assemblies [44], multibody systems[45]
as well as buckling problems [46,40]. In DSM, the shape functions
are essentially the exact general solutions derived from the
frequency-dependent governing differential equations. This is
superior to both the conventional FEM and BEMwhose shape func-
tions are approximate and are generally applicable to the low-
frequency range. Therefore, exact solutions can be obtained from
the DSM without mesh refinement as in the FEM and FDM. As a
result, the DSM is computationally efficient for the whole fre-
quency ranges, which is overwhelmingly superior to the element
based methods like the FEM and BEM, especially within the med-
ium and high frequency. Some researchers have performed semi-
nal researches to extend the DSM to the stochastic analysis.
Inspired by the aforementioned SFEM where the random fields
are described by the spectral method [9,10,47,48], Adhikari [49]
derived frequency-dependent stochastic dynamic stiffness matrix
for axial and bending vibration of rods by using doubly spectral
techniques (one for the random fields and the other for the
dynamic displacement fields). However, no attempt has been made
on stochastic dynamic stiffness method for two-dimensional
structures.

In this paper, we focus our attention on two-dimensional struc-
tural dynamic analysis with parametric uncertainties and develop
the stochastic dynamic stiffness formulation for the damped vibra-
tion of membrane structures. For the eigenvalue analysis, the
material property and tensions are assumed to be Gaussian ran-
dom variables. Through the Monte Carlo simulation to generate
samples for the random variables, the natural frequencies of an
undamped membrane can be directly obtained from the DSM.
While for the dynamic response analysis, by considering random
fields with exponential autocorrelation functions for both x and y
directions, the material property and the pretensions of the mem-
brane are characterized by a set of random fields and represented
by Karhunen–Loéve (KL) expansion in each direction. Based on the
exact shape function derived from the deterministic damped mem-
brane, the frequency-dependent stochastic element stiffness and
mass matrices for a damped membrane element are formulated
by incorporating the spectral expansion of the random fields. Sub-
sequently, a stochastic dynamic stiffness matrix is developed for a
membrane element with uncertainties. A membrane assembly
consisting of elements with different means and variations of
material properties and prestresses can therefore be modelled
easily following an assembly procedure. The modal analysis and
dynamic response analysis of such a membrane assembly can be
performed for a wide frequency range by using associated solution
techniques. In particular for dynamic response analysis, a superpo-
sition technique is used to facilitate the response analysis sub-
jected to any form of excitations such as uniform loads,
concentrated loads and non-uniform loads. Essentially, this work
presents major contributions to derive analytical formulations for
stochastic analysis of the membrane structures within a wide fre-
quency range by combining the merits of both the KL spectral
2

expansion and DSM mentioned above. The proposed method also
provides a feasible technique for efficient and accurate stochastic
analysis of other two-dimensional structures like plates and shells.

This paper is organized as follows. Section 2 presents the gen-
eral theory of the KL expansion and its application in stochastic
dynamic stiffness method. In Section 3, the deterministic dynamic
stiffness formulations for membranes are briefly recalled. In Sec-
tion 4, the elemental stochastic mass and stiffness matrices are
derived to obtain the stochastic dynamic stiffness matrix by using
the stochastic dynamic stiffness method. In Section 5, the basic
theory of stochastic dynamic response analysis for two-
dimensional structures is described. In Section 6, numerical results
of the developed formulation are obtained by Monte-Carlo simula-
tion. The conclusions are discussed in the last section.

2. General theory for stochastic dynamic stiffness method for
structures by using KL expansion

Problems of structural dynamics in which the uncertainty in
specifying stiffness and mass of the structure is modelled within
the framework of random fields can be treated using the stochastic
finite element method [50,51]. The application of the stochastic
finite element method to linear structural dynamics problems typ-
ically consists of the following key steps:

1. Selection of appropriate probabilistic models for parameter
uncertainties and boundary conditions.

2. Replacement of the element property random fields by an
equivalent set of a finite number of random variables. This step,
known as the ‘discretisation of random fields’ is a major step in
the analysis.

3. Formulation of the system equations of motion of the form
D xð Þu ¼ f where D xð Þ is the stochastic dynamic stiffness
matrix, u is the vector of random nodal displacement, and f is
the vector of applied forces. In general, D xð Þ is a random sym-
metric complex matrix.

4. Solution of the set of the complex random algebraic equation to
obtain the statistics of the response vectors. Alternatively, the
response statistics can also be obtained by solving the underly-
ing random eigenvalue problem (see, for example, [52–54] and
references therein).

We consider H;F; Pð Þ be a probability space with h 2 H denot-
ing a sampling point in the sampling spaceH;F is the complete r-
algebra over the subsets of H and P is the probability measure.
Suppose the spatial coordinate vector r 2 Rd where d 2 I 6 3 is
the spatial dimension of the problem. Consider H : Rd �H

� �! R

is a random field with a covariance function CH : Rd � Rd
� �! R

defined in a space D 2 R
d. Since the covariance function is finite,

symmetric and positive definite it can be represented by a spectral
decomposition. Using this spectral decomposition, the random
process H r; hð Þ can be expressed in a generalized Fourier type of
series as

H r; hð Þ ¼ H0 rð Þ þ
X1
j¼1

ffiffiffiffi
kj

p
nj hð Þuj rð Þ ð1Þ

where nj hð Þ are uncorrelated random variables, kj and uj rð Þ are
eigenvalues and eigenfunctions satisfying the integral equationZ

D

CH r1; r2ð Þuj r1ð Þdr1 ¼ kjuj r2ð Þ; 8 j ¼ 1;2; � � � ð2Þ

These associated eigenvalues and eigenfunctions will be used to
obtain the element mass, stiffness and damping matrices. We refer
the books by [50,55] and few recent references [56–58] for further
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discussions on Karhunen-Loève expansion. In fact, there are many
kinds of correlation function models of random fields, for example,
exponential type and squared exponential type. Gaussian random
fields with exponentially decaying autocorrelation function are con-
sidered in this paper. For all practical purposes, the series in Eq. (1)
can be ordered in a decreasing one so that it can be truncated using
a finite number of terms with the desired accuracy. The number of
terms could be selected based on the ‘amount of information’ to be
retained. The terms mainly depend on the correlation length of the
underlying random field. One needs more terms when the correla-
tion length is small.

A linear damped distributed parameter dynamical system in
which the displacement variable U r; tð Þ, where r 2 Rd is the spatial
position vector, d 6 3 is the dimension of the model and t is time,
specified in some domain D, is governed by a linear partial differ-
ential equation (see for example [59]):

q r;hð Þ@
2U r;tð Þ
@t2

þL1 hð Þ@U r;tð Þ
@t

þL2 hð ÞU r;tð Þ¼ p r;tð Þ; r2D;t2 T

ð3Þ
with linear boundary-initial conditions of the form

M1j
@U r; tð Þ

@t
¼ 0; M2jU r; tð Þ ¼ 0; r 2 @D; t ¼ t0; j ¼ 1;2; � � � ð4Þ

specified on some boundary surface @D. In the above equation,
T 2 R is the domain of the time variable t;q r; hð Þ is the randommass
distribution of the system, p r; tð Þ is the distributed time-varying
forcing function, L1 is the random spatial self-adjoint damping oper-
ator, L2 is the random spatial self-adjoint stiffness operator and M1j

and M2j are some linear operators defined on the boundary surface
@D. When parametric uncertainties are considered, the mass den-
sity q r; hð Þ : Rd �H

� �! R as well as the damping and stiffness
operators involve random processes. Frequency dependent random
element stiffness matrices were derived by various authors using
the dynamic weighted integral approach [60–63], the energy oper-
ator approach [64], sub-structure approach [65] and a series expan-
sion approach [66]. While numerical methods were used in these
studies, in this paper exact closed-from analytical expressions will
be derived for the element matrices. Below we briefly summarise
the derivations in references [49,67], which is adopted in this paper.

Suppose the underlying deterministic homogeneous system
corresponding to Eq. (3) without any forcing (see for example
[59]) is given by

q0
@2U r; tð Þ

@t2
þ L10

@U r; tð Þ
@t

þ L20U r; tð Þ ¼ 0; r 2 D ð5Þ

Taking the Fourier transform of Eq. (5) one has

�x2q0u r;xð Þ þ ixL10 u r;xð Þf g þ L20 u r;xð Þf g ¼ 0 ð6Þ
where x 2 0;X½ � is the frequency and X 2 R denotes the maximum
frequency.

Suppose that frequency-dependent displacement within an ele-
ment is interpolated from the nodal displacements as

ue r;xð Þ ¼ NT r;xð Þbue xð Þ ð7Þ
where

N r;xð Þ ¼ C xð Þs r;xð Þ ð8Þ
Here bue xð Þ 2 Cn is the nodal displacement vector and N r;xð Þ 2 Cn,
the vector of frequency-dependent shape functions and n is the
number of the nodal degrees-of-freedom. The vector

s r;xð Þ ¼ sj r;xð Þ� �T
;8 j ¼ 1;2; � � �m and the sj r;xð Þ 2 C are the basis

functions which exactly satisfy Eq. (6). Here m is the order of the
3

differential equation. The complex matrix C xð Þ 2 Cn�m depends
on the boundary conditions.

Extending the weak-form of finite element approach to the
complex domain, the frequency dependent n� n complex random
stiffness, mass and damping matrices can be obtained as

Ke x; hð Þ ¼
Z

De

ks r; hð ÞL2 N r;xð Þf gL2 NT r;xð Þ
n o

dr ð9Þ

Me x; hð Þ ¼
Z

De

q r; hð ÞN r;xð ÞNT r;xð Þdr and ð10Þ

Ce x; hð Þ ¼
Z

De

c r; hð ÞL1 N r;xð Þf gL1 NT r;xð Þ
n o

dr ð11Þ

where �ð ÞT denotes matrix transpose, ks r; hð Þ : Rd �H
� �! R is the

random distributed stiffness parameter, L2 �f g is the strain energy
operator, c r; hð Þ : Rd �H

� �! R is the random distributed damping
parameter andL1 �f g is the energy dissipation operator. The random
fields ks r; hð Þ;q r; hð Þ and c r; hð Þ are expanded using the Karhunen-
Loève expansion of Eq. (1). Using finite number of terms, each of
the complex elementmatrices can be expanded in a spectral series as

Ke x; hð Þ ¼ K0e xð Þ þ
XMK

j¼1

nKj
hð ÞKje xð Þ ð12Þ

Me x; hð Þ ¼ M0e xð Þ þ
XMM

j¼1

nMj
hð ÞMje xð Þ ð13Þ

and Ce x; hð Þ ¼ C0e xð Þ þ
XMC

j¼1

nCj
hð ÞCje xð Þ ð14Þ

Here the complex deterministic symmetric matrices, for example in
the case of the stiffness matrix, can be obtained as

K0e xð Þ ¼
Z

De

ks0 rð ÞL2 N r;xð Þf gL2 NT r;xð Þ
n o

dr and ð15Þ

Kje xð Þ ¼
ffiffiffiffiffiffi
kKj

q Z
De

uKj
rð ÞL2 N r;xð Þf gL2 NT r;xð Þ

n o
dr ð16Þ

8j ¼ 1;2; � � � ;MK

The equivalent terms corresponding to the mass and damping
matrices can also be obtained in a similar manner. Substituting
the shape function from Eq. (8), into Eqs. (15) and (16) one obtains

K0e xð Þ ¼ C xð ÞK
�
0e xð ÞCT xð Þ and ð17Þ

Kje xð Þ ¼
ffiffiffiffiffiffi
kKj

q
C xð ÞK

�
je xð ÞCT xð Þ; 8j ¼ 1;2; � � � ;MK ð18Þ

where

K
�
0e xð Þ ¼

Z
De

ks0 rð ÞL2 s r;xð Þf gL2 sT r;xð Þ� �
dr 2 CN�N and ð19Þ

K
�
je xð Þ ¼

Z
De

uKj
rð ÞL2 s r;xð Þf gL2 sT r;xð Þ� �

dr 2 CN�N ð20Þ

8j ¼ 1;2; � � � ;MK

Once the element stiffness, mass and damping matrices are
obtained in this manner, the global matrices can be calculated by
summing the element matrices with suitable coordinate transfor-
mations as in the standard finite element method. A closed-form
expression of the eigenfunctions appearing in Eq. (20) are available
for only few specific correlation functions and with simple bound-
aries only. For such cases, as will be seen later in the paper, the inte-
gral in Eq. (20) may be obtained in closed-form.

Due to the use of spectral element in the frequency domain,
only one finite element is required per physical ‘element’ of a
built-up system. For this reason, the dimension of the global
assembled matrices become small even when high-frequency
vibration is considered. The global spectral matrix can be
expressed as
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D x; hð Þ ¼ �x2M x; hð Þ þ ixC x; hð Þ þ K x; hð Þ 2 CN�N ð21Þ
where N is the dynamic degrees of freedom. Following the proposed
approach, in general the matrix D x; hð Þ can be expressed as

D x; hð Þ ¼ D0 xð Þ þ
X
j

nj hð ÞDj xð Þ ð22Þ

In this equation D : X�Hð Þ ! CN�N is a complex random symmet-
ric matrix and it needs to be inverted for every x to obtain the
dynamic response. Here X denotes the space of frequency. Here
direct Monte Carlo simulation is used to obtain the response statis-
tics in the numerical examples to be followed.

3. Overview of deterministic dynamic stiffness method for
undamped membranes

The stochastic dynamic stiffness method (SDSM) is developed
based on the frequency-dependent exact shape function of a deter-
ministic system. Therefore, this section is devoted to revisiting the
exact dynamic stiffness formulation for an undamped membrane
with general classical boundary conditions as developed very
recently by the authors [42].

Consider a homogeneousandflexiblemembranewhosemassper
unit area isq and is taut in x and ydirectionby Tx and Ty respectively,
namely, as shown in Fig. 1. In the frequency domain, we have

@2U
@x2

þ b
@2U
@y2

þ k2U ¼ 0 ð23Þ

where U ¼ U x; yð Þ is the transverse displacement of the membrane
and

b ¼ Ty

Tx
; k ¼ x

c0
; c0 ¼

ffiffiffiffiffi
Tx

q

s
ð24Þ

In order to satisfy the three different principal boundary conditions
(PBCs, as shown in Appendix A), the general solutions of Eq. (23)
should take the forms as follows [42].

U x; yð Þ ¼

X1
m¼1

Um xð Þ sin amyð Þ; C� C or C� F

X1
m¼0

Um xð Þ cos amyð Þ; F� F

8>>>><>>>>: ð25Þ

with

am ¼

mp
l ;m ¼ 1;2;3 � � � ; C� C

mp
l ;m ¼ 0;1;2 � � � ; F� F
m�1

2ð Þp
l ;m ¼ 1;2;3 � � � ; C� F

8>><>>: ð26Þ
Fig. 1. Displacements and forces of a

4

where m denotes the half wave number of a rectangular membrane
element in the y direction, Um xð Þ is derived in Appendix B. The
external force applied normal to the surface of the membrane
P x; yð Þ can be expressed as

P x; yð Þ ¼ Tx
@U
@x

¼

X1
m¼1

Pm xð Þ sin amyð Þ C� C or C� F

X1
m¼0

Pm xð Þ cos amyð Þ F� F

8>>>><>>>>: ð27Þ

Based on exact shape functions, dynamic stiffness formulations for
deterministic membrane elements can be derived as shown in Eq.
(B.10), more details are referred to [42]. In order to derive the deter-
ministic and random part of the element matrices, the shape func-
tion for a membrane element can be expressed in the form of Eq. (8)
as shown in Eq. (B.12).

4. Stochastic dynamic stiffness formulation for damped
membranes

Next, the exact shape functions of the deterministic undamped
taut membrane are to be used to develop the stochastic dynamic
stiffness formulations for damped membranes with uncertainties
following the steps in Section 2.

4.1. Stochastic governing differential equation and random field
discretization

If damping and stochastic nonhomogeneity are added to the
membrane element shown in Fig. 1, then the governing differential
equation (GDE) of a damped transversely vibrating membrane
with stochastic material parameters can be described by

@

@x
Tx x; yð Þ @u

@x
þ cx

@2u
@x@t

 !
þ @

@y
Ty x; yð Þ @u

@y
þ cy

@2u
@y@t

 !

� cq
@u
@t

� q x; yð Þ @
2u
@t2

¼ 0

ð28Þ

where x 2 0; a½ � and y 2 0; b½ � are given with respect to global axes
placed in a corner of the rectangular element, cx and cy are Kel-
vin–Voigt (material) damping parameters [68] and cq is viscous
damping parameter, which are assumed to be deterministic con-
stants. The GDE presented here is based on linear theory, which is
limited to linear structural behavior and not directly applicable to
nonlinear analysis under larger displacement. Moreover, the pre-
sent theory is developed based on a rectangular membrane ele-
ment, which is directly applicable to rectangular elements and
their assemblies, but cannot be used to model more general geome-
tries. In order to be applicable to more general geometries, other
rectangular membrane element.
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shapes of elements need to be developed. Now the three variables
Tx x; yð Þ; Ty x; yð Þ and q x; yð Þ are to be expanded with KL expansions.
It should be noted that in the dynamic stiffness formulation, the ori-
gin is placed at a corner of the membrane element, while the KL
expansion is to be performed at the centre of the membrane ele-
ment. Therefore, global axes x and y are introduced for KL expan-
sion with the following relation to x and y

x ¼ x� a=2; y ¼ y� b=2 ð29Þ
we can assume an exponentially decaying autocorrelation function
for all three variables.

C x1;x2;y1;y2ð Þ ¼ e�jx1�x2 jcxp�jy1�y2 jcyp ð30Þ
where p ¼ 1;2;3 corresponds to the three parameters Tx; Ty and q,
respectively. The exponential autocorrelation function in Eq. (30)
has been widely used in the literature. However, this function is
not differentiable at the origin. As a result, a large number of terms
are necessary in the KL expansion. Spanos et. al. [69] proposed a
modified exponential covariance kernel which circumvents this
problem. In the current work, larger correlation lengths are consid-
ered and consequently the drawback of the autocorrelation function
in Eq. (30) is avoided by considering higher-order terms in the KL
expansions in both the directions.

Following the KL expansion in the coordinates x; y, considering
nxp number of terms in the x direction and nyp number of terms in
the y direction (p ¼ 1;2;3 corresponds to the three parameters
Tx; Ty and q, respectively), we have

Tx x;yð Þ ¼ Tx0 þ
Xnx1=2
i¼1

Xny1=2
j¼1

nij1
ffiffiffiffiffiffiffi
kij1

p
f ij1 þ ni� j1

ffiffiffiffiffiffiffiffi
ki� j1

p
f i� j1 þ nij�1

ffiffiffiffiffiffiffiffi
kij�1

p
f ij�1 þ ni�j�1

ffiffiffiffiffiffiffiffiffiffi
ki� j�1

p
f i� j�1

� � ð31Þ

Ty x;yð Þ ¼ Ty0 þ
Xnx2=2
i¼1

Xny2=2
j¼1

nij2
ffiffiffiffiffiffiffi
kij2

p
f ij2 þ ni� j2

ffiffiffiffiffiffiffiffi
ki� j2

p
f i� j2 þ nij�2

ffiffiffiffiffiffiffiffi
kij�2

p
f ij�2 þ ni�j�2

ffiffiffiffiffiffiffiffiffiffi
ki� j�2

p
f i� j�2

� � ð32Þ

q x;yð Þ ¼ q0 þ
Xnx3=2
i¼1

Xny3=2
j¼1

nij3
ffiffiffiffiffiffiffi
kij3

p
f ij3 þ ni� j3

ffiffiffiffiffiffiffiffi
ki� j3

p
f i�j3 þ nij�3

ffiffiffiffiffiffiffiffi
kij�3

p
f ij�3 þ ni�j�3

ffiffiffiffiffiffiffiffiffiffi
ki� j�3

p
f i� j�3

� � ð33Þ

with

kijp ¼ 4cxpcyp

x2
ix
þcxpð Þ x2

jy
þcyp

� � ; f ijp ¼ cos wixð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=2þsin xi að Þ

2xi

q cos wjyð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=2þ

sin xj bð Þ
2xj

r ;

ki� jp ¼ 4cxpcyp

x�2
ix
þcxpð Þ x2

jy
þcyp

� � ; f i� jp ¼
sin w�

i
xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a=2�
sin x�

i
að Þ

2x�
i

r cos wjyð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=2þ

sin xjbð Þ
2xj

r ;

kij�p ¼ 4cxpcyp

x2
ix
þcxpð Þ x�2

jy
þcyp

� � ; f ij�p ¼ cos wixð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=2þsin xiað Þ

2xi

q sin w�
j
y

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=2�

sin x�
j
b

� �
2x�

j

s ;

ki�j�p ¼ 4cxpcyp

x�2
ix
þcxpð Þ x�2

jy
þcyp

� � ; f i�j�p ¼
sin w�

i
xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a=2�
sin x�

i
að Þ

2x�
i

r sin w�
j
y

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=2�

sin x�
j
b

� �
2x�

j

s
ð34Þ
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where the constants Tx0; Ty0 and q0 in the baseline model satisfy Eq.
(23) and kijp; f ijp i; j ¼ 1;2;3; � � � ;p ¼ 1;2;3ð Þ are the eigenvalues and
eigenfunctions corresponding to the homogeneous Gaussian ran-
dom fields with zero means and autocorrelation functions given
by Eq. (30).

4.2. Stochastic dynamic stiffness matrices

Taking Eqs. (29)-(34) into consideration, the stochastic stiffness
and mass matrix for a membrane element can be developed in the
form

Ke ¼ Ke0 þ
Xnx1=2
i¼1

Xny1=2
j¼1

nij1
ffiffiffiffiffiffiffi
kij1

p
Kij

ex þ ni� j1
ffiffiffiffiffiffiffiffi
ki� j1

q
Ki� j

ex þ nij�1
ffiffiffiffiffiffiffiffi
kij�1

q
Kij�

ex

�

þni� j�1
ffiffiffiffiffiffiffiffiffiffi
ki� j�1

q
Ki� j�

ex

�
þ
Xnx2=2
i¼1

Xny2=2
j¼1

nij2
ffiffiffiffiffiffiffi
kij2

p
Kij

ey þ ni� j2
ffiffiffiffiffiffiffiffi
ki� j2

q
Ki� j

ey þ nij�2
ffiffiffiffiffiffiffiffi
kij�2

q
Kij�

ey

�
þni� j�2

ffiffiffiffiffiffiffiffiffiffi
ki� j�2

q
Ki� j�

ey

�
ð35Þ

Me ¼ Me0 þ
Xnx3=2
i¼1

Xny3=2
j¼1

nij3
ffiffiffiffiffiffiffi
kij3

p
Mij

e þ ni�j3
ffiffiffiffiffiffiffiffi
ki� j3

q
Mi�j

e þ nij�3
ffiffiffiffiffiffiffiffi
kij�3

q
Mij�

e

�
þni�j�3

ffiffiffiffiffiffiffiffiffiffi
ki�j�3

q
Mi�j�

e

�
ð36Þ

where Ke0 ;Me0 are the deterministic matrices obtained in the
deterministic element and the rest are the random parts
obtained by using the eigenfunctions. For the transverse vibra-
tion of the membrane under all three kinds of principal bound-
ary conditions (PBCs, see Appendix A), they can be obtained as
follows.

Ke0 xð Þ ¼ C
R a
x¼0

R b
y¼0 Tx0

@s x;y;xð Þ
@x

h i
@s x;y;xð Þ

@x

h iT	
þTy0

@s x;y;xð Þ
@y

h i
@s x;y;xð Þ

@y

h iT

dydxCT

ð37Þ

Kij
ex xð Þ ¼ C

Z a

x¼0

Z b

y¼0
f ij1

@s x; y;xð Þ
@x

� �
@s x; y;xð Þ

@x

� �T( )
dydxCT

Kij
ey xð Þ ¼ C

Z a

x¼0

Z b

y¼0
f ij2

@s x; y;xð Þ
@y

� �
@s x; y;xð Þ

@y

� �T( )
dydxCT ð39Þ

Me0 xð Þ ¼ q0C
Z a

x¼0

Z b

y¼0
s x; y;xð ÞsT x; y;xð ÞdydxCT ð40Þ

Mij
e xð Þ ¼ C

Z a

x¼0

Z b

y¼0
f ij3s x; y;xð ÞsT x; y;xð ÞdydxCT ð41Þ

where the derivation of C and s have been given in Eqs. (B.12)–
(B.15) of Appendix B. Note that since damping coefficients are intro-
duced for the stochastic system, Eq. (B.2) should be modified as
follows.

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bda2

m � k2d

q
ð42Þ

where

bd ¼
Ty0 þ icyx
Tx0 þ icxx

; kd ¼ x
cd

; cd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tx0 þ icxx
q0 � icq=x

s
ð43Þ
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The rest can be derived in a similar way just by replacing ij with
i�j; ij� and i�j�. Taking C-C PBCs for example, performing the above
integrations through symbolic calculations, we will have

Ke0 xð Þ ¼ 1
4kam

k2Tx0 bam � c1sð Þ akCsh2 þ Cth � akCthþ 1ð ÞCsh
� akCthþ 1ð ÞCsh akCsh2 þ Cth

 !(

þa2
mTy0 bam þ c1sð Þ Cth� akCsh2 akCth� 1ð ÞCsh

akCth� 1ð ÞCsh Cth� akCsh2

 !) ð44Þ

Me0 xð Þ ¼ q0 bam � c1sð Þ Cth� akCsh2 akCth� 1ð ÞCsh
akCth� 1ð ÞCsh Cth� akCsh2

 !
ð45Þ

Kij
ex xð Þ ¼ 2k2k0b1Csh

2

D00

k0a1 �2k0a3
�2k0a3 k0a1

 !
;

Ki�j
ex xð Þ ¼ 2k2k0b1Csh

D10

�k1a1 0

0 k1a1

 ! ð46Þ

Kij�
ex xð Þ ¼ 2k2k1b1sCsh

2

D01

k0a1 �2k0a3
�2k0a3 k0a1

 !
;

Ki� j�
ex xð Þ ¼ 2k2k1b1sCsh

D11

�k1a1 0

0 k1a1

 ! ð47Þ

Kij
ey xð Þ ¼ �2k0b2a2

mCsh
2

D00

k0a2 2k0a4k

2k0a4k k0a2

 !
;

Ki� j
ey xð Þ ¼ �2k0b2a2

mCsh
D10

�k1a1 0

0 k1a1

 ! ð48Þ

Kij�
ey xð Þ ¼ �2k1b1sa2

mCsh
2

D01

k0a2 2k0a4k

2k0a4k k0a2

 !
;

Ki� j�
ey xð Þ ¼ �2k1b1sa2

mCsh
D11

�k1a1 0

0 k1a1

 ! ð49Þ

Mij
ey xð Þ ¼ 2k0b1Csh

2

D00

k0a2 2k0a4k

2k0a4k k0a2

 !
;

Mi�j
ey xð Þ ¼ 2k0b1Csh

D10

�k1a1 0

0 k1a1

 ! ð50Þ

Mij�
ey xð Þ ¼ 2k1b1sCsh

2

D01

k0a2 2k0a4k

2k0a4k k0a2

 !
;

Mi� j�
ey xð Þ ¼ 2k1b1sCsh

D11

�k1a1 0

0 k1a1

 ! ð51Þ

where variables defined in Eqs. (44)–(51) are provied in detail in
Appendix C.

For the case of C-F PBCs, the matrices take the same form as Eqs.
(44)–(51) except for different am as defined in Eq. (26). While for F-
F PBCs, am remain unchanged but bam � c1sð Þ and bam þ c1sð Þ in Eq.
(44) need swap places, bam � c1sð Þ in Eq. (45) should be

bam þ c1sð Þ; k0b1 in Eqs. (46) and (50) should be replaced by �k0b2,

and k0b2 in Eq. (48) should be �k0b1, negative signs need to be added
in front of the expressions of Eqs. (47), (49) and (51).

After obtaining the deterministic part and random part of the
element stiffness and mass matrices, the dynamic stiffness matrix
can be derived by Eq. (22). By using the stochastic dynamic stiff-
6

ness matrix D x; hð Þ, the dynamic response can be derived, which
will be discussed in the next section.

5. Stochastic dynamic response analysis

Once the stochastic dynamic stiffness matrices D x; hð Þ for the
membrane elements under one of the three kinds of principal
boundary conditions (PBCs, see Appendix A) are obtained, they can
be assembled for the overall membrane assembly. Upon applying
prescribed BCs on the nodal boundaries (NBs, see Appendix A), we

arrived at the global stochastic dynamic stiffness matrix Df
m x; hð Þ

for the final structure, where m denotes the half wave number in
the y direction. The assembly procedure and the application of nodal
boundary conditions are similar to those of plate assembly.

Therefore, forced vibration analysis of the membrane assem-
blies under any prescribed BCs can be performed based on

Df
m x; hð Þdf

m ¼ f fm ð52Þ

where generalized forces f fm can be obtained by any prescribed
transverse excitation P x; yð Þ in the form of Eq. (27) by using the pro-
jection method.

For example, supposing two arbitrary excitations either concen-
trated or distributed applied at any arbitrary locations of the mem-
brane assembly, as shown by P1 x; yð Þ and P2 x; yð Þ in Fig. 2, the
equivalent nodal loads fe caused by the excitations for each mem-
brane element can be obtained through integration

fe ¼
Z
x

Z
y
P x; yð ÞN x; y;xð Þdxdy ð53Þ

where N x; y;xð Þ is the shape function given in Eq. (B.12). Subse-
quently, the equivalent nodal loads can be superposed linearly on
the elements’ nodes. For each nodal load Pi yð Þ under all three kinds
of PBCs, according to Eq. (27) we have

Pi yð Þ ¼

X1
m¼1

Pmi sin amyð Þ C� C or C� F

X1
m¼0

Pmi cos amyð Þ F� F

8>>>><>>>>: ð54Þ

Therefore, according to Eq. (54), the generalized force Pmi for a given
wavenumber m can be expressed as

Pmi ¼ 2
b

Z b

0
Pi yð Þ sin amyð Þdy;m ¼ 1;2;3; � � � C� C or C� F ð55Þ

Pmi ¼
2
b

R b
0Pi yð Þ cos amyð Þdy;m ¼ 1;2;3; � � � ; F� F

1
b

R b
0Pi yð Þdy;m ¼ 0: F� F

(
ð56Þ

After obtaining the generalized force Pmi on each of the NBs, the

generalized force vector f fm can be developed in terms of nodal
boundary conditions (NBCs, see Appendix A) prescribed beforehand.

Then by solving Eq. (52), the generalized displacements df
m can be

obtained. Substituting the generalized displacements dmi on the
NBs into Eq. (25) and taking inverse Fourier transformation, the
dynamic response at any point along the NBs can be obtained as
follows.

Ue
i ysð Þ ¼

X1
m¼1

dmi sin amysð Þ; C� C or C� F

X1
m¼0

dmi cos amysð Þ; F� F

8>>>><>>>>: ð57Þ

Further, once we obtain the generalized displacements dmi, the
nodal displacement vector de for each membrane element can be



Fig. 2. The excitations either concentrated or distributed and responses at any arbitrary location of the membrane assembly.
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easily developed. Eq. (25) now can be expressed in the form of the
shape function (see Appendix B for details) as

Ue x; yð Þ ¼

X1
m¼1

NT x; y;xð Þde
; C� C or C� F

X1
m¼0

NT x; y;xð Þde
; F� F

8>>>><>>>>: ð58Þ

According to Eq. (58), we can obtain the response of each mem-
brane element at some arbitrary location x0; y0ð Þ as shown in Fig. 2.

6. Results and discussions

To demonstrate the derivations proposed above, we consider a
rectangular membrane as an illustrative example. The mean mass
per unit area and tensions are assumed to be q0 ¼ 7:805
kg/m2; Tx0 ¼ 13800 N/m, Ty0 ¼ 6900 N=m respectively. The length
and width of the membrane are a ¼ 2m and b ¼ 1m respectively.
An FCCC boundary condition is considered for the cases in the fol-
lowing two subsections (the boundary conditions are listed in the
anticlockwise sense ofL1-L2-L3-L4 as described in Appendix A).
The standard deviations of the random fields for Tx; Ty and q are
assumed to be 10% of the mean values of the random fields, so
the ’strength parameters’ are considered as �Tx ¼ 0:1; �Ty ¼ 0:1
and �q ¼ 0:1. Although Gaussian random variable is assumed here,
this may not be a suitable choice for physical properties such as the
mean mass per unit area and tensions which assume positive val-
ues only. There is a small probability that a physically unrealistic
negative value may occur for these properties. The chances of such
Fig. 3. Statistical scatter of the first six eigenvalues with parametric uncertainties (The

7

non-physical negative values are greatly reduced by employing a
small randomness as used here. In Section 6.1, we consider the
material parameters Tx; Ty and q as Gaussian random variables
and discuss the statistics of the eigenvalues of undamped free
vibration through the direct Monte Carlo simulation. In Section 6.2,
the stochastic dynamic response of a damped membrane is
obtained using the developed stochastic dynamic stiffness
formulations.
6.1. Eigenvalue analysis with random variables

It is assumed that the tensions Tx; Ty and the mass per unit area
q are uncertain variables so that Tx ¼ Tx0 1þ �Txh1ð Þ;
Ty ¼ Ty0 1þ �Tyh2

� �
;q ¼ q0 1þ �qh3

� �
, and H ¼ h1; h2; h3f gT 2 R3 is

a vector of uncorrelated standard Gaussian random variables with
zero mean and unit standard deviation.

The computation procedure is described as follows. First, the
samples of three independent Gaussian random variables
h1; h2; h3 are generated, then the dynamic stiffness matrix in Eq.
(B.10) for each set of samples is obtained and the natural frequen-
cies of an undamped membrane are computed directly by the
Wittrick-Williams algorithm [42]. Through Monte Carlo simula-
tion, a total of 1000 samples are computed to obtain the statistics
and the probability density functions of the eigenvalues. The above
procedures are implemented in MATLAB. To demonstrate the effi-
ciency and accuracy of the present theory, a comparison is made
with the finite element method (FEM) with the help of MATLAB
generating random samples for the FEM.
third and the fourth eigenvalues have coincident deterministic natural frequency).



Fig. 4. Probability density functions of the first six eigenvalues (The third and the fourth eigenvalues have coincident deterministic natural frequency).

Fig. 5. The mean and CoV of the first 100 natural frequencies based on MSC of 1000 samples.

Table 1
The means and coefficient of variations (CoV) of the eigenvalues with low to high
frequency ranges based on MSC of 1000 samples (The results of FEM are obtained in
ANSYS with 100� 50 mesh size).

Mode DSM FEM

f (Hz) CoV (%) f (Hz) CoV (%)

1 15.824 6.823 15.819 6.828
10 47.899 6.086 47.901 6.090
20 66.229 6.116 66.293 6.115
30 82.001 6.110 82.121 6.099
40 93.458 6.141 93.780 6.148
50 104.959 6.215 105.447 6.218
60 114.005 6.147 114.582 6.150
70 122.894 6.150 123.674 6.143
80 131.282 6.179 132.178 6.169
90 138.351 6.118 139.340 6.104
100 145.493 6.109 146.733 6.101

Time(min) 7 123
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The first six eigenvalues computed from Monte Carlo simula-
tion by using 1000 samples are shown in Fig. 3. Solid lines repre-
sent the eigenvalues for the corresponding deterministic
membrane model with average parameters, whose values are
k1 ¼ 15:768 Hz, k2 ¼ 21:671 Hz, k3 ¼ k4 ¼ 30:194 Hz, k5 ¼ 33:655
Hz, k6 ¼ 39:683 Hz. While each random scatter denotes the eigen-
value of the corresponding random parameters with the given
8

sample. It can be seen that the first two eigenvalues are well sep-
arated and little statistical overlap exists between them. However,
the third to sixth eigenvalues are close to each other and there is
distinct statistical overlap between them. Note that the third and
the fourth eigenvalues have coincident deterministic natural fre-
quency(k3 ¼ k4), their statistics are almost overlapping. Besides,
the scatter degree becomes larger for higher modes than smaller
modes, indicating that uncertainties in prestressing and mass dis-
tributions play a more important role for higher modes.

The probability density functions (pdf) of the first six eigenval-
ues obtained by the kernel density estimation, truncated Gaussian
distribution and v2 distribution are shown in Fig. 4. The three dif-
ferent pdfs have been proposed in Appendix D. Meanwhile, nor-
malized histograms of the eigenvalues obtained from the Monte
Carlo simulation are provided in the same figure. It can be seen
that those methods agree well with the Monte Carlo simulation
results; There is a relatively small region of statistical overlap
between the first and the second eigenvalues, while the regions
of statistical overlap are significant among the last four of the six
eigenvalues. It is worth mentioning that the region is almost coin-
cident between the third and fourth eigenvalues because they cor-
respond to coincident natural frequencies. The above discussions
agree well with the observations based on Fig. 3.

To observe the statistics of the eigenvalues in a wide frequency
range, we calculate the mean and the coefficient of variation (CoV)
of the first 100 natural frequencies of the corresponding random



Fig. 6. Three different types of harmonic excitations applied at the nodal boundary of a rectangular membrane.

Fig. 7. The amplitudes of dynamic responses at the midpoint of the free edge (x ¼ a; y ¼ b=2) under three different types of harmonic excitation. (The yellow curves represent
the responses of the first 50 samples. The red and pink solid line exhibits the 5 and 95 percentile respectively.) (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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parameters with the given samples by using the DSM and FEM (the
mesh size is 100� 50), as shown in Fig. 5. The CoV is measured as
the ratio of the standard deviation to the mean of the natural fre-
quency. In general, the CoVs of the first 100 natural frequencies
range from 6% up to 7%, and the differences of the CoVs are rela-
tively small in higher frequency range. It might be due to the rea-
son that the system parameters are assumed to be Gaussian
random variables, the mean values are close to the nominal values.
As can be seen from Fig. 5, the results computed by the DSM and
FEM agree well for lower frequency range. However, the difference
becomes larger for higher modes. This can be clearly illuminated
9

from Table 1. However, the FEM takes as long as 123 min to com-
pute the first 100 modes for a total of 1000 samples while the DSM
only costs 7 min. It is apparent that the developed method gives
results covering low to high frequency ranges with much higher
accuracy and computational efficiency than the FEM.
6.2. Dynamic response analysis with random fields

In this subsection, the dynamic response analysis of a damped
membrane is considered. The damping coefficients are set to be



Fig. 8. Displacement response field at 17.25 Hz under a uniformly distributed excitation.

Fig. 9. Stochastic samples of the displacement response fields at 17.25 Hz under a uniformly distributed excitation.

Fig. 10. Displacement response field at 22.1 Hz under concentrated excitation.
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Fig. 11. Displacement response field at 30.2 Hz under half-sine excitation.
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cx ¼ 5� 10�4 (s)Tx0; cy ¼ 5� 10�4 (s)Ty0 and cq ¼ 3 (s�1) q0. The
correlation lengths of the random fields for Tx; Ty and q are
assumed to be a=2 in x direction and b=2 in y direction. In general,
we consider three types of boundary excitations including con-
centrated, uniform and half-sin with amplitudes of 1 N, 1 N/m
and sin py

b

� �
N/m respectively, as shown in Fig. 6. Those cases are

probably the most representative cases in engineering
applications.

Particularly, Dirac delta function will be introduced to describe
concentrated excitation as shown in Fig. 6(a). As a consequence,
P yð Þ can be expressed as P yð Þ ¼ F0d y� yp

� �
. Substituting it into

Eq. (55), Pm can be derived as Pm ¼ 2F0=b sin amyp
� �

.
Following the derivations in Sections 4 and 5, the response can

be readily computed under the aforementioned three types of har-
monic excitations. The response is computed up to 60 Hz covering
the first sixteen natural modes of the membrane. In the calculation
of response by DSM, the truncation number M for the series in Eq.
(25) is taken to be 10 after convergence check.

The deterministic response, the mean, and the standard devia-
tion of the absolute value of the response at the midpoint of the
free edge (x ¼ a; y ¼ b=2) under three types of excitations are
shown in Fig. 7. To obtain these results, we use a Monte Carlo sim-
ulation by generating 2000 samples. In the KL expansion, 18 terms
are used for both x and y directions. With 18 number of terms, the
ratio of the last eigenvalue in the KL expansion to the first eigen-
value decreases to below 5% in both the directions. The element
matrices incorporated with 18 random variables are obtained by
the formulations derived in Section 4. In both cases under the uni-
form and half-sine excitations, the truncating number is set to be
10 and 1 respectively; while in the case under concentrated excita-
tion, the truncating number is set to be 25 to assure sufficient con-
vergence of the response below 60 Hz.

Some meaningful observations can be made based on Fig. 7. In
all three cases, there are some discrepancies between the means of
responses and the deterministic responses at lower frequencies,
however, they are almost coincident at high frequencies. As for
the standard deviations of the responses in the three cases, they
are biased by the means and some peaks are reached around the
natural frequencies. As the frequency increases, the standard devi-
ation curves become flat. These results are obtained by using an
individual dynamic stiffness element, and the calculation for the
assembly of membrane elements with different material proper-
ties of the baseline models is also practical.

The results are shown in Fig. 7 focus on the response of a single
point (x ¼ a; y ¼ b=2) at the free edge. However, sometimes we are
more concerned with the displacement response field of the whole
structural domain. To shed light on the response over the whole
domain, Figs. 8, 10 and 11 show the deterministic, mean and stan-
11
dard deviation (std) of the displacement response field under the
aforementioned three types of excitations and three different
frequencies.

The statistics of displacement response field at 17.25 Hz under
the uniformly distributed excitation 1 N/m along the righthand-
side boundary are shown in Fig. 8. The number of superposed
waves in the DSM is 10 whereas the mesh in the FEM is 400 �
200. The deterministic response of displacement fields computed
by the DSM and the FEM are in good agreement, which is evident
by comparing Figs. 8(a) and 8(b). It can be seen that the mean and
std of the displacement field (Fig. 8(c), (d)) shows the similar shape
with that of the deterministic response of displacement field (Fig. 8
(b)) but with different amplitudes, and the std (Fig. 8(d)) is large
where the amplitude is large. Besides, Fig. 9 provides the responses
of membrane subject to uniform boundary excitations for three
different random samples. It can be seen that the displacement
response fields of the majority of samples follow similar patterns
to the deterministic one (due to the fact that the shapes in
Fig. 9a) and Fig. 8(c) are similar), whereas a few samples have dif-
ferent shapes as shown in Fig. 9(b), (c).

The displacement response fields at 22.1 Hz under concentrated
excitation and 30.2 Hz under half-sine excitation along the
righthand-side boundary are shown in Figs. 10 and 11. Figs. 10(a)
and 11(a) represent the deterministic value computed by the
FEM, while the rest are the means and standard deviations com-
puted by the proposed method. The numbers of superposed waves
in the DSM are 25 for concentrated excitation and 1 for half-sine
excitation respectively. The mesh sizes of FEM in both cases are
both 400 � 200. As can be seen in the figures, the distributions
of the means and stds follow similar patterns to the deterministic
displacement fields. But the mean values over the whole structural
domain are different from the amplitudes of the deterministic dis-
placement fields.
7. Conclusions

An analytical stochastic dynamic stiffness method (SDSM) is
developed for the dynamic behavior of the bidirectionally taut
damped membranes with distributed parametric uncertainties.
The complex (due to damping) frequency-dependent two-
dimensional transcendental shape functions coming from the
DSM model are employed. The shape functions associated with
the two-dimensional Karhunen–Loéve expansion representing
the random fields are used to derive the explicit and exact
closed-form expressions for the complex mass and stiffness matrix
elements. By using the developed stochastic dynamic stiffness
matrix in terms of the mass and stiffness matrix and a superposi-
tion technique, the exact closed-form expressions for the stochas-
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tic dynamic responses of a single point and the global structural
domain of a damped membranes are derived. Three typical types
of excitations are considered to obtain the stochastic dynamic
responses numerically. Some novel aspects presented in this paper
for the first-time are:

� The analytical stochastic dynamic stiffness matrix of a two-
dimensional structure (membrane) is developed for the first
time by incoporating the Karhunen–Loéve expansion and the
dynamic stiffness method.

� The DoF of the stochastic model is significantly reduced by
using spectral discretization in random field, spectral model in
frequency domain as well as spectral discretization of spatial
deformation, which make it possible to solve the two-
dimensional stochastic problems.

� The frequency-dependent shape functions are used which make
the model to be valid for the whole frequency range, which is in
sharp contrast to the stochastic finite element method suitable
only for low frequency range.

Numerical examples are given to illustrate the computational effi-
ciency and accuracy of the developed formulations, which leads to
a unique competence to perform the efficient and reliable stochas-
tic analysis for the whole frequency range compared with the con-
ventional FEM. The approach proposed here can serve as the
benchmark for extending stochastic dynamic stiffness method to
more general two-dimensional structures such as plates [70,71]
and composite panels [72–74].
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Appendix A. Boundary conditions for the membrane

Fig. A1 shows displacement and force boundary conditions
(BCs) on four edges of a rectangular membrane, where a and b
are the length and width, respectively. P2;U2 and P4;U4 are the
principal boundary conditions (PBCs) along the principal bound-
aries (PBs) L2 and L4 while P1;U1 and P3;U3 are the nodal bound-
ary conditions (NBCs) along the nodal boundaries (NBs) L1 and
L3. Note that the principal boundary means the opposite edge’s
boundary conditions are assumed to be known to derive exact gen-
eral solutions of the membrane vibration, while the nodal bound-
ary can be used to assemble the membrane assemblies and we can
apply any arbitrary classical BCs onto it.

For a membrane element, there are three combinations for the
PBCs: C-C, C-F(F-C), F-F as shown in Fig. A2, where C-F and F-C are
equivalent (Note that a single membrane element also has three
combinations for the NBCs: C-C, C-F(F-C), F-F. Hence, there are in
total nine combinations of BCs for a rectangular membrane: CCCC,
FCFC, FCCC, FFFF, CFCF, FFCF, CCCF, FCFF, FCCF, where the boundary
conditions are listed in the anticlockwise sense of L1-L2-L3-L4).
The fixed or clamped edge is denoted by the letter ‘C’ and the free
edge is represented by the letter ‘F’. For a clamped edge,
Ui ¼ 0 i ¼ 1;2;3;4ð Þ. For a free edge, Pi ¼ 0 i ¼ 1;2;3;4ð Þ.
ur edges of a rectangular membrane.

itions (PBCs) for a rectangular membrane element.
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Appendix B. Dynamic stiffness formulation for a deterministic
undamped membrane

The derivation leading to Eq. (B.10) has been given in [42], we
record here for the sake of self-completeness. Substituting Eq.
(25) into Eq. (23) gives

d2Um

dx2
� k2Um ¼ 0 ðB:1Þ

where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ba2

m � k2
q

ðB:2Þ
The general solution of Eq. (B.1) and Pm xð Þ in Eq. (27) can be written
as

Um ¼ C1 sinh kxð Þ þ C2 cosh kxð Þ ðB:3Þ

Pm xð Þ ¼ Txk C1 cosh kxð Þ þ C2 sinh kxð Þð Þ ðB:4Þ
where C1 and C2 are constants.

The displacement and force BCs on the nodal boundaries (NBs)
can be recast as follows.

At x ¼ 0 : Um ¼ Um3 At x ¼ a : Um ¼ Um1 ðB:5Þ

At x ¼ 0 : Pm ¼ �Pm3 At x ¼ a : Pm ¼ Pm1 ðB:6Þ
Substituting Eqs. (B.5) and (B.6) into Eqs. (B.3) and (B.4), we have

de ¼ Um1

Um3

	 

¼ sinh ka cosh ka

0 1

� �
C1

C2

	 

ðB:7Þ

f e ¼ Pm1

Pm3

	 

¼ Txk

cosh ka sinh ka
�1 0

� �
C1

C2

	 

ðB:8Þ

Eliminating the constant vector from Eqs. (B.7) and (B.8), the rela-
tionship between force vector f e and displacement vector de can
be established in the form of dynamic stiffness matrix Ke xð Þ as
f e ¼ Ke xð Þde ðB:9Þ
where

Ke xð Þ ¼ Txk
coth kað Þ �csch kað Þ
�csch kað Þ coth kað Þ

� �
ðB:10Þ

The derivation of Eqs. (B.1)–(B.10) above is applicable to the mem-
brane elements under all three kinds of PBCs in Eq. (25).

According to Eq. (25), the two-dimensional displacement field
can be represented by the linear combination of the basic func-
tions. Eliminating the constant vector from Eqs. (B.7) and (25) to
give the relationship between the displacement field and nodal
displacement in the form of Eqs. (7) and (8).

U x; yð Þ ¼ NT x; y;xð Þde ðB:11Þ
where N x; y;xð Þ is the frequency-dependent shape functions vector
and can be expressed as

N x; y;xð Þ ¼ C xð Þs x; y;xð Þ ðB:12Þ
In the above equation

s ¼
sinh kxð Þ sin amyð Þ
cosh kxð Þ sin amyð Þ

0B@
1CA; C� C or C� F ðB:13Þ

s ¼
sinh kxð Þcos amyð Þ
cosh kxð Þ cos amyð Þ

0B@
1CA; F� F ðB:14Þ
13
C xð Þ ¼ � coth kað Þ 1
csch kað Þ 0

 �
; C� C;C� F; F� F ðB:15Þ
Appendix C. Variables in Eqs. (44)–(51)

k0a1 ¼ 2c0akxiChShþ Ch2 þ 1
� �

s0ax
2
i þ 4k2s0a ; ðC:1Þ

k0b1 ¼ 2c1c0bsxjam þ s2s0bx
2
j � 4s0ba

2
m; ðC:2Þ

k0b2 ¼ � c21 þ 1
� �

s0bx
2
j þ 2c1c0bsxjam þ 4s0ba

2
m; ðC:3Þ

k0a2 ¼ 2c0akxiChShþ s0ax
2
i Sh

2 � 4k2s0a ; ðC:4Þ
k0a3 ¼ c0akxiShþ s0ax

2
i Chþ 2k2s0aCh; ðC:5Þ

k0a4 ¼ 2ks0aCh� c0axiSh; ðC:6Þ
k1a1 ¼ 2ks1aCh� c1ax

�
i Sh; ðC:7Þ

k1b1 ¼ c1bsx
�
j � 2c1s1bam; ðC:8Þ

s ¼ sin bamð Þ; c1 ¼ cos bamð Þ; ðC:9Þ
Ch ¼ cosh akð Þ; Sh ¼ sinh akð Þ;Cth ¼ coth akð Þ;Csh ¼ csch akð Þ;

ðC:10Þ
s0a ¼ sin

axi

2

� �
;

s1a ¼ sin
1
2
ax�

i

 �
;

D00 ¼ Q0
aQ

0
b 4k2xi þx3

i

� �
x3

j � 4xja2
m

� �
; ðC:13Þ

D01 ¼ Q1
aQ

0
b x�2

i þ 4k2
� �

x3
j � 4xja2

m

� �
; ðC:14Þ

D10 ¼ Q0
aQ

1
bxi x2

i þ 4k2
� �

4a2
m �x�2

j

� �
; ðC:15Þ

D11 ¼ Q1
aQ

1
b x�2

i þ 4k2
� �

4a2
m �x�2

j

� �
; ðC:16Þ

Q0
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin axið Þ

xi
þ a

s
;

Q1
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� sin ax�

i

� �
x�

i

s
;

Appendix D. Probability density function of the eigenvalues

Three different kinds of methods named the kernel density esti-
mation, truncated Gaussian distribution and v2 distribution are
introduced in brief. They are applied in Section 4.1 to obtain the
probability density functions (pdf) of eigenvalues.

1. Kernel distribution
A kernel distribution is a nonparametric estimation method
used for the pdf of a random variable. By selecting a smoothing
function and a proper bandwidth value, a kernel distribution
can be obtained. The kernel density estimator which represents
the estimated pdf of a random variable can be expressed as
pkjh
uð Þ ¼ 1

nh

Xn
i¼1

K
u� ui

h

� �
ðD:1Þ

where u1;u2; . . . ; un are random samples of the eigenvalues, n is
the sample size, K �ð Þ is the kernel function, and h is the band-
width. The associated default parameters are set in the MATLAB.

2. Truncated Gaussian distribution
The truncated Gaussian density function takes the following
form [75]
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pkj
uð Þ ¼ 1ffiffiffiffiffiffiffi

2p
p

rjU bkj=rj

� � exp �
u� bkj

� �2
2r2

j

8><>:
9>=>;; u

P 0 ðD:2Þ

where bkj is the mean of the eigenvalues and rj is the standard
deviation given by

r2
j ¼ l 2ð Þ

j � bk2
j ðD:3Þ

In Section 4.1, the samples are generated through the Monte

Carlo simulation, therefore, bkj and rj in Eq. (D.2) are represented
by the sample means and standard deviations.

3. v2 distribution
The v2 probability density function can be expressed as follow-
ing form [75]
pkj
uð Þ 	 1

cj
pv2vj

u� gj

cj

 !

¼
u� gj

� �v j=2�1
exp � u� gj

� �
=2cj

n o
2cj
� �v j=2

C v j=2
� � ðD:4Þ

with

gj ¼
l 1ð Þ2
j

l 2ð Þ
j

�2l 2ð Þ2
j

þl 1ð Þ
j
l 3ð Þ
j

2l 1ð Þ3
j

�3l 1ð Þ
j
l 2ð Þ
j

þl 3ð Þ
j

cj ¼
2l 1ð Þ3

j
�3l 1ð Þ

j
l 2ð Þ
j

þl 3ð Þ
j

4 l 2ð Þ
j

�l 1ð Þ2
j

� � ðD:5Þ

and

v j ¼ 8
l 2ð Þ

j � l 1ð Þ2
j

� �3
2l 1ð Þ3

j � 3l 1ð Þ
j l 2ð Þ

j þ l 3ð Þ
j

� �2 ðD:6Þ

In Section 4.1, the constants gj; cj, and v j are obtained by the first
three moments of kj and the moments of the kj xð Þ are estimated
by the sample moments.
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